Tissue Engineering: The Future of Regenerative Dentistry

Dr Rinda Sharma

Department of Periodontology, Post Graduate Institute of Dental Sciences, Rohtak, Haryana

Date of Submission: 01-11-2025 Date of Acceptance: 08-11-2025

ABSTRACT: Tissue engineering represents an innovative technique in dentistry, aiming to restore or replace damaged oral tissues using a combination of cells, scaffolds, and signalling molecules. This review summarizes current advances and potential applications of tissue engineering in periodontology, emphasizing stem cells-based regeneration, scaffold development, and biomimetic strategies. A comprehensive review of contemporary literature was conducted focusing on dental pulp, periodontal, and bone regeneration. Stem cell-derived constructs and bioengineered scaffolds have demonstrated promising results in preclinical and early clinical growth Integration of nanotechnology, and 3-D bioprinting further enhances predictability and biological functionality. Tissue engineering marks a transformative shift from repair to true regeneration in periodontal surgery. Multidisciplinary integration and clinical translation of cell-based and scaffold-driven technologies will define the future of regenerative oral healthcare.

KEYWORDS: Tissue engineering, regenerative dentistry, stem cells, scaffolds, growth factors, biomaterials.

I. INTRODUCTION

Modern dentistry is evolving from traditional restorative methods toward biologically driven regeneration. Tissue engineering, initially defined by Langer and Vacanti (1993), involves the use of cells, scaffolds, and biologically active molecules to restore, maintain, or enhance tissue function (1). Within the oral cavity, this approach holds immense potential for regenerating dental pulp, periodontal ligament, alveolar bone, and even entire tooth structures. Conventional treatments like fillings, crowns, or implants address structural loss but cannot replicate biological vitality. Tissue engineering provides a promising alternative by harnessing the body's intrinsic regenerative capacity, combining stem cell biology, biomaterials, and growth signalling to achieve functional restoration.

II. PRINCIPLES OF TISSUE ENGINEERING

Tissue engineering is based on the interplay of three core components i.e. cells, scaffolds, and signalling molecules, often referred to as the tissue engineering triad.

1. Cells

Stem cells are the cornerstone of tissue engineering. Various dental and non-dental stem cell sources have been identified, including:

- Dental pulp stem cells (DPSC's)
- Stem cells from human exfoliated deciduous teeth (SHED)
- Periodontal ligament stem cells (PDLSC's)
- Stem cells from apical papilla (SCAP)
- Dental follicle progenitor cells (DFPC's)

These cells exhibit self-renewal and multipotent differentiation capacities, capable of forming odontoblasts, osteoblasts, or cementoblast like cells (2). DPSC's, in particular, have demonstrated dentin-pulp complex formation when combined with suitable scaffolds.

2. Scaffolds

Scaffolds provide the three-dimensional framework for cellular attachment, proliferation, and differentiation. An ideal scaffold should be biocompatible, biodegradable, and mechanically stable. Common materials include:

- Natural polymers: Collagen, chitosan, fibrin, alginate.
- Synthetic polymers: Polylactic acid (PLA), polycaprolactone (PCL), polyglycolic acid (PGA).
- Ceramics and composites: Hydroxyapatite, tricalcium phosphate (TCP), bioactive glass. Advancements in 3-D bioprinting and nanofabrication have enhanced scaffold biomimicry, enabling precise control of pore size, geometry, and surface bioactivity (3).

3. SignallingMolecules

Growth factors orchestrate cell behaviour and tissue formation. Key molecules include:

- Bone morphogenetic proteins (BMP-2, BMP-7) for osteo-induction.
- Vascular endothelial growth factor (VEGF) for angiogenesis.
- Transforming growth factor-beta (TGF- β) for differentiation regulation.
- Fibroblast growth factor (FGF) for cell proliferation.

Controlled delivery through scaffold incorporation enhances regenerative efficacy (4).

III. APPLICATIONS IN REGENERATIVE DENTISTRY

1. Dental Pulp Regeneration

Dental pulp vitality is essential for tooth longevity. Pulpal necrosis traditionally necessitates root canal therapy, which removes all living tissue. Regenerative endodontics instead seeks to restore pulp tissue capable of defence and repair. DPSC's or

SCAP seeded within hydrogel or collagen scaffolds, combined with growth factors like VEGF and BMP's, have successfully generated vascularized dentin-pulp complexes in animal studies and limited human trials (5). These findings indicate a shift toward biologically functional pulp therapy.

2. Periodontal Regeneration

Periodontitis leads to the destruction of the supporting periodontal complex i.e. cementum, periodontal ligament, and alveolar bone. PDLSC's cultured on biomimetic scaffolds can regenerate ligament fibres and re-establish attachment (6). The addition of platelet-rich fibrin (PRF) and enamel matrix derivative (EMD) further enhances healing by releasing autologous growth factors. Recent studies show promising outcomes using collagen scaffolds loaded with PDLSC's and nanohydroxyapatite for simultaneous regeneration of soft and hard tissues (7).

Material Type	Examples	Composition	Function in	Advantages
			Regeneration	
Natural	Collagen,	Protein-based	Promote cell adhesion	Biocompatible,
polymers	Chitosan, Fibrin	biopolymers	and ECM deposition	biodegradable
Synthetic	Polycaprolacton	Aliphatic	Provide structural	Tuneable
polymers	e (PCL),	polyesters	support and controlled	mechanical
	Polylactic acid		degradation	strength
	(PLA),			
	Polyglycolic			
	acid (PGA)			
Bio ceramics	Hydroxyapatite	Calcium	Facilitate	Bioactive and
	(HA), β-	phosphate-	osteoconduction and	osteoinductive
	tricalcium	based materials	mineralization	
	phosphate (β-			
	TCP)			
Composite	Collagen-HA,	Hybrid	Mimic native bone-	Improved
scaffolds	Chitosan–PCL	natural/syntheti	ligament interface	mechanical
		c		stability
Biologic	Platelet-rich	Autologous	Enhance angiogenesis	Minimally
matrices	fibrin (PRF),	proteins/growth	and fibroblast activity	invasive,
	Enamel matrix	factors		accelerates
	derivative			healing
	(EMD)			

These materials have shown synergistic effects when combined with PDLSCs or MSCs, improving the regeneration of both soft and hard periodontal components.

3. Alveolar Bone Regeneration

Alveolar bone loss due to trauma, cysts, or tooth extraction can compromise prosthetic rehabilitation. Bone tissue engineering utilizes mesenchymal stem cells (MSC's) integrated with bio ceramic scaffolds like β -tricalcium phosphate (β -

TCP) or hydroxyapatite to promote osteogenesis (8). 3-D printed, patient-specific scaffolds are now being used to precisely reconstruct bony defects.

4. Whole-Tooth Regeneration

Whole-tooth regeneration represents the ultimate goal of dental tissue engineering. Early experimental models have combined embryonic dental epithelial and mesenchymal cells to form bioengineered tooth germs capable of eruption in animal models (9). However, replicating complex

tooth anatomy and achieving proper integration remain significant challenges before human application becomes feasible.

IV. EMERGING TECHNOLOGIES 1.3-D Bioprinting

3D bioprinting enables spatial placement of cells and biomaterials with microscopic precision, producing constructs that closely replicate native tissue microarchitecture. "Bioinks" composed of hydrogels and living cells are used to print dentinpulp structures with controlled vascular channels (10).

2. Nanotechnology

Nanostructured materials enhance cellular adhesion and differentiation. Nanohydroxyapatite mimics native bone mineral, improving osteoconduction, while nanofiber scaffolds guide cell orientation and tissue growth (11).

3. Gene Therapy

Gene-activated matrices allow the sustained release of regenerative signals. By transfecting cells with genes encoding BMP or VEGF, localized and prolonged tissue regeneration can be achieved (12).

4. Exosome Based Regeneration

Stem cell derived exosomes act as paracrine mediators, promoting angiogenesis, inflammation control, and tissue repair. These cell free approaches are increasingly being explored for safer, standardized therapies (13).

V. CHALLENGES AND LIMITATIONS

Despite encouraging preclinical progress, several barriers prevent routine clinical use:

- **Vascularization:** Engineered constructs often lack sufficient blood supply, leading to necrosis or poor integration.
- Cell source variability: Stem cell potency declines with donor age and passage number.
- **Immunogenicity:** Cross-species materials and allogenic cells risk immune rejection.
- **Standardization:** Lack of consistent protocols hinders reproducibility.
- Ethical and regulatory concerns: Stem cell manipulation and gene editing face legal restrictions in many regions (14).

Additionally, cost and complex laboratory requirements limit accessibility in low-resource dental settings.

VI. CONCLUSION

Looking back on this review, the overall outcome of results to be observed is highly promising. The primary objective of regenerating functional dental tissues using the tissue engineering triad has been successfully demonstrated in numerous preclinical models. More specifically, the use of advanced scaffolds and stem cells has shown the ability to regenerate pulp, periodontal, and bone tissues with increasing predictability. However, the final objective of routine clinical translation and whole-tooth regeneration was not fully met because challenges vascularization like standardization, but theoretically and in limited trials, it is achievable. We are confident though that these objectives can be met with continued research and technological innovation. Tissue engineering represents the cornerstone of regenerative dentistry, shifting focus from mechanical restoration to biological renewal. The next decade may witness transition of tissue engineering from experimental promise to everyday dental practice.

REFERENCES

- [1]. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.
- [2]. Gronthos S, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA. 2000;97(25):13625–30.
- [3]. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24.
- [4]. Chen FM, et al. Prospects for tissue engineering of periodontal tissues. Biomaterials. 2010;31(24):6369–79.
- [5]. Nakashima M, Akamine A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod. 2005;31(10):711–8.
- [6]. Chen FM, et al. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials. 2010;31(31):7892–907.
- [7]. Vaquette C, et al. A biphasic scaffold design for the regeneration of the periodontium complex. Biomaterials. 2012;33(22):5560–73.
- [8]. Gao C, et al. Bone biomaterials and interactions with stem cells. Bone Res. 2014;2:14017.
- [9]. Ikeda E, et al. Fully functional bioengineered tooth replacement as an

International Journal Dental and Medical Sciences Research

Volume 7, Issue 6, Nov – Dec 2025 pp 24-27 www.ijdmsrjournal.com ISSN: 2582-6018

- organ replacement therapy. Proc Natl Acad Sci USA. 2009;106(32):13475–80.
- [10]. Gungor-Ozkerim PS, et al. Bioinks for 3D bioprinting: An overview. Biomater Sci. 2018;6(5):915–46.
- [11]. Webster TJ, et al. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials. 2000;21(17):1803–
- [12]. Kempen DH, et al. Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials. 2009;30(14):2816–25.
- [13]. Zhang S, et al. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Theranostics. 2016;6(12):1803–16.
- [14]. Mao JJ, et al. Craniofacial tissue engineering by stem cells. J Dent Res. 2006;85(11):966–79. (10)